| Function |
Integral |
| $a$ |
$ax$ |
| $x^n$ |
$\frac{x^{n+1}}{n+1}$ |
| $\frac{1}{x}$ |
$\ln|x|$ |
| $e^x$ |
$e^x$ |
| $a^x$ |
$\frac{a^x}{ln(a)}$ |
| $\ln(x)$ |
$x\ln(x)-x$ |
| $\cos(x)$ |
$\sin(x)$ |
| $\sin(x)$ |
$-\cos(x)$ |
| $\tan(x)$ |
$-\ln|\cos(x)|$ |
| $\csc(x)$ |
$-\ln|\csc(x)+\cot(x)|$ |
| $\sec(x)$ |
$\ln|\sec(x)+\tan(x)|$ |
| $\cot(x)$ |
$\ln|\sin(x)|$ |
| $\sin^{-1}(x)$ |
$x\sin^{-1}(x)+\sqrt{1-x^2}$ |
| $\cos^{-1}(x)$ |
$x\cos^{-1}(x)-\sqrt{1-x^2}$ |
| $\tan^{-1}(x)$ |
$x\tan^{-1}(x)-\frac{1}{2}\ln|x^2+1|$ |
| $\csc^{-1}(x)$ |
$x\csc^{-1}(x)+\ln|x+\sqrt{x^2-1}|$ |
| $\sec^{-1}(x)$ |
$x\sec^{-1}(x)-\ln|x+\sqrt{x^2-1}|$ |
| $\cot^{-1}(x)$ |
$x\cot^{-1}(x)+\frac{1}{2}\ln|x^2+1|$ |